Notice: Function _load_textdomain_just_in_time was called incorrectly. Translation loading for the thegem domain was triggered too early. This is usually an indicator for some code in the plugin or theme running too early. Translations should be loaded at the init action or later. Please see Debugging in WordPress for more information. (This message was added in version 6.7.0.) in /home/xjpiftx2okaf/public_html/wp-includes/functions.php on line 6121

Notice: Function _load_textdomain_just_in_time was called incorrectly. Translation loading for the rocket domain was triggered too early. This is usually an indicator for some code in the plugin or theme running too early. Translations should be loaded at the init action or later. Please see Debugging in WordPress for more information. (This message was added in version 6.7.0.) in /home/xjpiftx2okaf/public_html/wp-includes/functions.php on line 6121
Doctors sequenced a entire human genome in five hours with breakthrough new machine - 311 Institute
Scroll Top

Doctors sequenced a entire human genome in five hours with breakthrough new machine

WHY THIS MATTERS IN BRIEF

The ability to quickly and cheaply analyse patients DNA and genomes for disease will save lives and help doctors treat patients faster.

 

Love the Exponential Future? Join our XPotential Community, future proof yourself with courses from XPotential Universityconnect, watch a keynote, read our codexes, or browse my blog.

In the past if you had a genome or DNA strand you wanted to sequence, for example to identify a disease or to find out more about an organism, you’d have had to spend millions of dollars and it would have taken you months or even years to do.

 

See also
US startup unveils brain hacking earbuds that treat a range of diseases

 

Now though thanks to various breakthroughs in genetic sequencing technology like this one at Stanford University that cost’s nearing $100 to $1,000 and it can be done in a matter of hours. And to say that these breakthroughs will revolutionise the world of personalised medicine is a massive understatement.

In the latest experiment a team of scientists at Stanford Medicine set out to sequence the genomes of twelve patients, five of whom received a genetic diagnosis from the sequencing information in the amount of time most people spend at work.

The researchers noted that not all ailments are genetically based, which is likely why some of the patients didn’t get a diagnosis after their sequencing information was returned.

 

See also
Digital twins are helping companies solve great challenges

 

In one of the cases scientists took on, it took only five hours and two minutes to sequence a patient’s genome, setting the first Guinness World Records title for fastest DNA sequencing technique – normally, clinicians consider results that come within a few weeks as rapid.

“It was just one of those amazing moments where the right people suddenly came together to achieve something amazing. It really felt like we were approaching a new frontier,” said Euan Ashley, professor of medicine, genetics and biomedical data science at Stanford, in a press release.

Out of the 12 patients, Stanford scientists completed genome sequencing in an average of eight hours. The team also achieved a diagnostic rate of roughly 42 percent, which is about 12 percent higher than the average for diagnosing mystery diseases.

 

See also
New study confirms that zaps from electric eels transfer new genes into animals

 

Genome sequencing allows scientists to see a patient’s complete DNA makeup and contains critical information ranging from a person’s eye color to inherited diseases. It’s a process vital to diagnosing patients with diseases rooted in their DNA, because once a doctor knows the specific genetic mutation, they can tailor just the right treatment plan.

The faster scientists can sequence a patient’s genome, the faster the patient can leave critical care units, require fewer tests, recover more quickly and spend less money on costly care.

The sequencing team at Stanford used a special machine built by Oxford Nanopore Technologies, whose miniature MinION sequencing tool is used to sequence the DNA of astronauts on the International Space Station (ISS).

 

See also
Go X dubiously unveil the world's first self-driving E-Scooters that come to you

 

In this case the machine the researchers used was composed of 48 sequencing units, also known as flow cells. That allowed scientists to sequence one person’s genome using all flow cells simultaneously, which turned out to be such a massive success that actually overwhelmed the lab’s computational systems.

Stanford graduate student Sneha Goenka found a quick solution that involved taking the data compiled right into a cloud-based storage system. From there, computational power could be amplified and sift through data in real-time, algorithms worked independently to scan incoming genetic code for errors that might cause disease.

The final step required scientists to compare a patient’s gene variants against publicly documented variants known to cause disease, which they did using Artificial Intelligence (AI), and amazingly the team say they think the genome sequencing time can be crunched down even further.

 

See also
Big studio exec axes $800 Million studio project after seeing OpenAI SORA

 

“I think we can halve it again. If we’re able to do that, we’re talking about being able to get an answer before the end of a hospital ward round. That’s a dramatic jump [in capability],” said Ashley.

Stanford scientists plan to offer a sub-10-hour turnaround to patients in intensive care units at Stanford Hospital and Lucile Packard Children’s Hospital Stanford, and eventually spread to other hospitals.

Related Posts

Leave a comment

FREE! 2025 TRENDS AND EMERGING TECHNOLOGY CODEXES
+

Awesome! You're now subscribed.

Pin It on Pinterest

Share This