Scroll Top

Electricity from the ocean depths could power entire island nations

WHY THIS MATTERS IN BRIEF

The ocean contains a huge amount of heat energy, but so far tapping into it hasn’t been easy. But that might change.

 

Love the Exponential Future? Join our XPotential Community, future proof yourself with courses from XPotential Universityconnect, watch a keynote, read our codexes, or browse my blog.

When it comes to the future of energy we’re all familiar with the conventional forms of energy whether it’s hydrogen, nuclear, renewables, or even perhaps fusion. But what about ocean thermal energy plants? In the tropics, the deep sea is cold and the sea surface is very warm. That temperature difference can be harnessed and turned into electricity. And, if we can improve the technology, this method of producing power could be a godsend especially for island nations reliant on expensive and polluting diesel for their power.

 

See also
Perfectly transparent solar concentrator turns every window into a solar panel

 

For more than a century, researchers have explored the idea of ocean thermal energy conversion (OTEC). There’s nothing fundamentally new to the idea of extracting power from temperature differences, after all that’s what all kinds of thermoelectric generators – some of which are now helping solar panels generate electricity 247 – are already harnessing. In fact, the underlying technology is similar to the way coal, gas and geothermal power plants create electricity, by using vapor to spin a turbine.

 

The Future of Energy 2050, by keynote futurist Matthew Griffin

 

The challenge though is finding the right spot, where the temperature differences make it worthwhile. In the case of ocean thermal energy plants that means relatively close to the equator — think north of Papua New Guinea, the Philippines, and off the coast of southern Japan. At present, pilot plants are only able to generate a fraction of what a large wind turbine can. But on the positive side, ocean thermal plants can generate power 24 hours a day irrespective of any other factors.

These power plants operate by running liquids with low boiling points, such as ammonia, through a closed loop. The heat from warm seawater (between 20 and 30℃) heats the liquid until it turns into vapor and can be used to spin a turbine. Then, the vapor is exposed to cold seawater (around 5℃), which turns it back into a liquid so the cycle can continue. To get this cold water, these plants have pipes stretching down 600 meters into the deep sea.

 

See also
Researchers smash fusion record to generate 700 times more power than the entire US grid

 

The benefits of the system are clear: it’s a closed loop, heated and cooled by heat exchangers with no discharge of the fluid to the ocean. And it’s available at all times, in contrast to the well-known intermittency challenges of better developed renewable technologies like solar and wind.

The downside is at present, the technology isn’t ready for prime time. A pilot plant in Hawaii installed by Makai Ocean Engineering in 2015 has a capacity of 100 kilowatts. That’s 20–30 times less than a typical wind turbine when operating, or the equivalent of around 12 solar arrays on homes or small businesses in Australia.

The main technical challenge to overcome is getting access to the large volumes of cold seawater required. Makai’s pilot uses a pipe one meter in diameter which plunges 670 meters into the ocean depths.

To scale up to a more useful 100-megawatt plant, Makai estimates the pipe would have to be ten meters in diameter and go as deep as one kilometer. This kind of infrastructure is expensive and must be built to withstand corrosion and cyclones.

 

See also
China is smashing the US in 37 out of 44 key emerging technology areas

 

If the plants are built offshore, the cost of transmission lines adds to the overall expense. Makai estimates 12 commercial-scale offshore plants could cover Hawaii’s total electricity needs.

If OTEC plants can be built large enough, the cost will come down. But there’s another challenge too. To get close to wind and solar’s cost – now as low as 1–2 cents per kilowatt hour – ocean thermal plants would need around four Niagara Falls worth of water flowing through the system at any one time.

Why is such a huge volume of water required? In short, a thermodynamic bottleneck. The physics of any energy conversion mean it’s impossible to convert all the heat energy into mechanical work like spinning the turbine. This efficiency issue is a real challenge for ocean thermal plants, where the energy conversion process has a relatively small temperature difference between warm and cool seawater. In turn, that means only a very small percentage of the heat energy in the seawater is converted to electricity.

 

See also
The Maldives Government announces plans to build the world's first ocean city

 

While these plants couldn’t compete with wind and solar in large mainland markets, they could have a role for the small island states dotting the Pacific and Caribbean, as well as islands far from the main grid, such as Norfolk Island or many of the smaller Indonesian islands.

Island nations, in particular, tend to have high retail electricity prices, low electricity demand and a reliance on imported diesel for electricity generation. Researchers from South Korea and New Zealand have made the case that OTEC could be a viable source of baseload power for island states – but only after more pilot plants are built to help perfect the design of larger plants.

Most people though if tasked with helping an island state produce its own clean energy might first look at geothermal – a more mature technology with better economics. That’s because the areas most favorable for OTEC plants typically have significant potential for geothermal electricity as well, produced by drilling wells on land and using high-temperature fluids from those wells.

 

See also
World's most powerful laser will be able to rip matter out of a vacuum

 

Still, OTEC could play a useful role in tackling several challenges at once. Take cooling. You can take the cool seawater and use as a form of air conditioning, as two resorts in French Polynesia are doing. You can also use this cool water in aquaculture to raise cold-water fish such as salmon, or as a way of keeping surface water cool during marine heatwaves threatening fish farming in New Zealand. It may even be possible to use OTEC plants to produce hydrogen as an export commodity in small island states. To meet our urgent emission reduction goals, it is worth exploring all renewable energy options.

Despite all the pros and cons though Hawaii for one isn’t writing off OTEC just yet. At this stage, however, it’s hard to see how ocean thermal plants can become competitive with better-established renewables, such as wind, solar, and even geothermal, given the vast volumes of cold seawater required so despite the renewed interest in the technology I for one would file it under “has potential, but needs more work”.

Related Posts

Leave a comment

FREE! 2024 TRENDS AND EMERGING TECHNOLOGY CODEXES
+

Awesome! You're now subscribed.

Pin It on Pinterest

Share This