Scroll Top

In the wake of global instability researchers turn to quantum computers to secure supply chains


Quantum computers can optimise and re-configure even the most complex global supply chains in real time, so they’re going to be a great asset in the future.


Love the Exponential Future? Join our XPotential Community, future proof yourself with courses from XPotential Universityconnect, watch a keynote, read our codexes, or browse my blog.

The Russo-Ukrainian conflict and the COVID-19 pandemic have shown how vulnerable global supply chains can be. International events can disrupt manufacturing, delay shipping, induce panic buying and send energy costs soaring. And now, following on from BMW using quantum computers to optimise and re-configure its own massive global supply chains in real time teams at Sandia National Laboratories are edging closer to being able to use quantum computers to overcome supply chain challenges and restore global security during future periods of uncertainty and unrest.


See also
Researchers set a staggering new Quantum teleportation record


“Reconfiguring the supply chain on short notice is an exceptionally difficult optimization problem, which restricts the agility of global trade,” said Alicia Magann, a Truman Fellow at Sandia. She has led the development of a new way to design programs on quantum computers, which she and her team think could be especially useful for solving these kinds of massive optimization problems someday in the future when quantum technology becomes more mature.

The Sandia team recently published the new approach in two joint papers in the journals Physical Review Letters and Physical Review A.

Optimization algorithms help industry perform tasks like coordinating trucking routes or managing financial assets. These problems are generally difficult to work out, Magann said, and as the number of variables increases, finding good solutions becomes harder.

One of the potential long-term solutions to solving complex optimization problems is to use quantum computers, an emerging technology that experts believe will be able to find answers to some problems much faster than even todays most powerful supercomputers. But building quantum computing technology is only one of the challenges.


See also
Researchers unveil the world’s smallest motor to power nanobots and nanomachines


“There’s also this other question of: Here’s a quantum computer – how do I actually program this thing? How do I use it?” Magann said.

Researchers around the world are actively developing algorithms for large-scale optimizations on future technologies, with the hope that these programs could help industries manage limited resources more effectively and pivot operations more quickly in the face of rapid changes to the labor market, supplies of raw materials or other logistics.

Mohan Sarovar, the principal investigator on the project, said, “It’s very difficult to come up with quantum algorithms. One of the big reasons for this, apart from quantum computing being very unintuitive, is that we have very few general frameworks for developing quantum algorithms.”

A leading idea for programming quantum optimization algorithms has involved coupling quantum computers and conventional ones to solve a problem together, called the variational approach. The conventional computer performs an optimization of control settings that dictate the behavior of the quantum computer.


See also
A DNA computer just calculated the square root of 900


One issue with this approach is that its impact is constrained by the ability of the conventional computer to solve optimization problems with a large number of parameters.

Sandia scientist Kenneth Rudinger, who also worked on the project, said the variational approach might not be practical when quantum computers finally become capable of living up to their promise.

“We have good reason to believe that the size of the kinds of problems you would want to solve is too large for the variational approach; at that scale it becomes essentially impossible for the conventional computer to find good settings for the quantum device,” he said.

The Sandia team succeeded in greatly reducing the role of classical computing. With the new framework, called FALQON – short for Feedback-based Algorithm for Quantum Optimization – the classical computer does not do any optimization. It only needs the computational power of a calculator, letting the quantum computer do all the heavy lifting and theoretically allowing it to work on much more complicated problems, like how to efficiently reroute a shipping fleet when a major port suddenly closes.


See also
In a world first AI can now model the molecular machines that govern life itself


A framework, in this case, means a structure for how to write an algorithm. Sandia’s core concept is for a quantum computer to repeatedly adapt its structure as it moves through a calculation. Layers of quantum computing gates, the building blocks of quantum algorithms, are determined by measurements of the output of previous layers through a feedback process.

“After I run the first layer of the algorithm, I measure the qubits and get some information from them,” Magann said. “I feed that information back to my algorithm and use that to define the second layer. I then run the second layer, measure the qubits again, feed that information back for the third layer, and so on and so forth.”

Sarovar said, “It defines another class of quantum algorithms that operate through feedback.”

Until quantum computers become more powerful, the framework is largely a theoretical tool that can only be tested on problems classical computers can already solve. However, the team believes the framework shows great potential for formulating useful algorithms for the medium-to-large-scale quantum computers of the future. They are eager to see if it can help develop quantum computing algorithms to solve problems in chemistry, physics and machine learning.

Related Posts

Leave a comment


Awesome! You're now subscribed.

Pin It on Pinterest

Share This