Scroll Top

New tech cheaply produces Lithium and Hydrogen while desalinating seawater


For now the world meeting Net Zero climate targets relies on the electrification of industries like transportation, but global Lithium reserves are under pressure, this solves that.


Love the Exponential Future? Join our XPotential Community, future proof yourself with courses from XPotential Universityconnect, watch a keynote, read our codexes, or browse my blog.

With the rise of the lithium-based battery demand for this soft, silvery-white metal – the lightest solid element in the periodic table – has exploded. And, with the race to zero carbon by 2050 gathering steam, forcing the electrification of transport, lithium will be an even more valuable asset in the next 30 years.


See also
These metal munching bacteria might help solve mining's toxic waste problem


The supply of raw materials for batteries could even end up being a national security issue, too – China’s global leadership on high-volume Electric Vehicle production has put it ahead of the game, and while the majority of ground-based lithium reserves are in the “lithium triangle” of Chile, Bolivia and Argentina, China controls more than half’s the world’s supply simply through investments and ownership. It has also shown in the past that it’s not afraid to wield commodity supplies as a weapon in trade disputes.

But as with other metals like uranium, land-based lithium reserves pale in comparison to what’s out there in the sea. According to researchers at Saudi Arabia’s King Abdullah University of Science and Technology (KAUST), there’s about 5,000 times as much lithium in the oceans as there is in land deposits, and now a newly developed technology could start extracting it cheaply enough to make the big time – while producing hydrogen gas, chlorine gas and desalinated water as a bonus.


See also
The world's first living robots were created by an AI and a supercomputer


The process relies on an electrochemical cell containing a nanoceramic membrane made from Lithium Lanthanum Titanium Oxide (LLTO), with pores just wide enough to let lithium ions through while blocking larger metal ions.


The Future of Energy 2050 keynote, by Matthew Griffin


“LLTO membranes have never been used to extract and concentrate lithium ions before,” says post-doctorate researcher Zhen Li, who developed the cell.

The cell has three compartments. Seawater flows into the first, from which positively charged lithium ions pass through the LLTO membrane into a second compartment holding a buffer solution and a copper cathode coated with platinum and ruthenium. Negatively charged ions, meanwhile, go through an anion exchange membrane into a third compartment containing a sodium chloride solution, where they’re attracted to a platinum-ruthenium anode.


See also
Brazil releases billions of genetically modified Mosquitos to combat Zika


The lithium is pulled through the LLTO membrane toward the cathode when a current is applied, and the process generates hydrogen gas at the cathode and chlorine gas at the anode, both of which can be collected. Where lithium starts out at a concentration of just 0.2 parts per million in unprocessed seawater, experiments found that running it through this cell in five 20-hour stages enriched the concentration to over 9,000 parts per million, leaving a solution that was pH-adjusted, centrifuged, rinsed and dried to leave a lithium phosphate powder of 99.94 percent purity, meeting standards for battery-grade lithium phosphate.

According to the research team, the electricity required to produce a kilogram of lithium in this way (about 76.3 kWh) would cost just $5 – and every kilogram of lithium would generate a bonus 0.87 kg of hydrogen gas and 31.12 kg of chlorine gas. At 2020 prices, these side products alone could sell for between $6.90 and $11.70.


See also
Nanogenerator breakthrough can generate electricity from the blood in your veins


As for what that kilogram of lithium phosphate is worth, I couldn’t find a price for 99.95 percent pure lithium phosphate, so take this with a grain of salt, but at 99.99 percent purity it’s going for more than $4,700 per kilo in small quantities. It’ll be nothing near that in bulk wholesale – and indeed it seems most EV batteries use battery-grade (99.5 percent) lithium carbonate, which is more like $14 per kilo. Make of that what you will, but as the technology scales up and costs come down it could be that lithium extracted in this way could be very competitively priced therefore making it an attractive option to lithium hungry buyers.

Another side bonus is that the seawater that goes through just one stage of this process comes out with total salt concentrations under 500 parts per million. According to the researchers, this “implies that after lithium harvest, the remaining water can be treated as freshwater. Hence, the process also has a potential to integrate with seawater desalination to further enhance its economic viability.”


See also
Solar panels made from cyborg bacteria promise even cheaper energy


How long will the gear last? Well, the researchers say they tested the LLTO membrane for more than 2,000 hours in Red Sea water and found “a negligible decay in performance,” so things seem positive there. And will the equipment be expensive? It doesn’t seem that way.

“Although a rigorous economic analysis will be still necessary to include other capital and operating expenses,” reads the paper, “it is arguable that the energy cost is the major expenditure in this process.”

So, a machine that can pull battery-grade lithium out of the ocean for a negligible electricity cost that’s more than offset by the hydrogen and chlorine gases that are produced in the process – and it pumps out desalinated freshwater too? Shut up and take my investment money, right?


See also
This speedy robot fixes broken pipes 10 times faster than humans


Maybe. It should be noted that there are rare earth metals in the cell design itself. Also, that the process of enriching seawater takes a hundred hours, and this device has only been tested on a lab bench at very small scale. But the researchers say there’s plenty of room for optimisation, and since the process appears to speed up considerably in the latter stages as lithium concentrations rise, it seems apparent that a richer feed content – the water from shale gas fields, for example – might tip the equation even further.

Will we end up regretting it if we pull all the lithium out of the oceans? Will all the fish go bipolar? Well, there’s rather a lot of lithium in there. About 180 billion tons, which would supply the projected 2030 global demand for lithium more than 100,000 times over. So, it’d certainly take a while – a while in which the bajillions of dollars currently being pumped into finding better battery solutions than lithium might well bear fruit.


See also
Forget flying taxis this company is building a 40 seater flying bus


Still, it certainly looks like a promising lithium production method with some very neat cherries on top.

The full paper is open access at the peer-reviewed journal Energy & Environmental Science.

Source: KAUST Discovery

Related Posts

Leave a comment


Awesome! You're now subscribed.

Pin It on Pinterest

Share This