Scroll Top

Researchers use wifi to read words hidden behind walls in yet another first

WHY THIS MATTERS IN BRIEF

Even the most mundane things in our homes can give away our secrets and invade our privacy when combined with AI and other technologies.

 

Love the Exponential Future? Join our XPotential Community, future proof yourself with courses from XPotential University, read about exponential tech and trendsconnect, watch a keynote, or browse my blog.

Have you ever wanted to see through walls? Well, as I’ve been writing about for years now increasingly researchers are finding new ways to do just that – and it often involves using Artificial Intelligence (AI) and the humble WiFi router …

 

See also
World's largest DDoS attack tops 1Tbps

 

Wi-Fi signals can do much more than deliver streaming movies and music around the home, it turns out they can also be used to identify shapes through solid walls, as demonstrated in recent experiments. The ability for Wi-Fi to spot movement through walls has been shown off before, but the technology struggles with seeing anything that isn’t in motion.

To overcome that limitation, researchers from the University of California Santa Barbara (UCSB) designed a Wi-Fi setup to concentrate specifically on the edges of objects, much like a person might do an outline drawing.

 

See how it works

 

This approach meant that the researchers were able to use what’s known as the Geometrical Theory of Diffraction (or GTD), which describes the behavior of waves as they hit the edges of objects – causing interference or diffractions in the waves.

In this case, the waves are Wi-Fi signals, which form shapes called Keller cones as they diffract around the edges of objects. By interpreting the composition and direction of these Keller cones, a scene can gradually be revealed.

 

See also
An AI just wrote, directed and produced its own appalling film, but it's the future

 

“We then develop a mathematical framework that uses these conic footprints as signatures to infer the orientation of the edges, thus creating an edge map of the scene,” says electrical and computer engineer Yasamin Mostofi, from UCSB.

Called Wiffract, the setup put together by Mostofi and his colleagues involves three Wi-Fi transmitters to send out signals and a roving receiver to catch them as they bounce around.

We know Wi-Fi waves can go through walls – your router would be pretty useless if it didn’t – but these waves are also affected as they strike objects.

Some complex math and educated guesswork is then required to determine the shapes that correspond with the Keller cones. Using data from edges that have a strong reading, the scientists were able to improve the system’s ability to detect edges with a weaker reading, perhaps further away from the transmitters or in a concealed spot.

 

See also
New era of hypersonic warfare forces the Pentagon to rethink its strategy

 

“Once we find the high-confidence edge points via the proposed imaging kernel, we then propagate their information to the rest of the points using Bayesian information propagation,” says electrical engineer Anurag Pallaprolu, from UCSB.

The statistical number-crunching involved in Bayesian information propagation is not unlike working on a jigsaw puzzle: if you’re sure about the position of some pieces, you may be able to figure out the position and shape of the pieces needed to fill the gaps.

A lot of fine-tuning is still required, but the system can already recognize large letters. Ultimately, it could be used anywhere from disaster rescue to smart home monitoring, ‘seeing’ inside rooms when there’s no line of sight.

The study has not yet been peer-reviewed, but has been presented at the Proceedings of the 2023 IEEE National Conference on Radar.

Related Posts

Leave a comment

FREE! 2024 TRENDS AND EMERGING TECHNOLOGY CODEXES
+

Awesome! You're now subscribed.

Pin It on Pinterest

Share This