Scroll Top

Scientists created huge atom clouds to test quantum entanglement at scale


The ability to harness quantum entanglement at scale will help revolutionise communications systems, computing, healthcare, and warfare, to name but a few.


From tunnelling through impenetrable barriers to being in two places at the same time, the quantum world of atoms and particles is famously bizarre. Yet the strange properties of quantum mechanics are not mathematical quirks – they are real effects that have been seen in laboratories time and time again.


See also
NIST unveils its top four quantum resistant encryption algorithms


One of the most iconic features of quantum mechanics is “entanglement” – describing particles that are mysteriously linked regardless of how far away from each other they are. Now three independent European research groups have managed to entangle not just a pair of particles, but separated clouds of thousands of atoms. They’ve also found a way to harness their technological potential.

When particles are entangled they share properties in a way that makes them dependent on each other, even when they are separated by large distances. Einstein famously called entanglement “spooky action at a distance,” as altering one particle in an entangled pair affects its twin instantaneously – no matter how far away it is.

While entanglement may sound wacky, experiments have been able to show that it exists for many years now. It also has the potential to help us create the next generation of ultra-secure, some say unhackable, quantum communications networks, like the one just demonstrated between Austria and China, because any attempt to interfere with systems involving entangled particles immediately disrupts the entanglement, making it obvious that a message has been tampered with. I told you it was weird. They can also help store a huge amount of information in a given volume, something called super-dense coding. Along with this storage capacity, entanglement can also help link and combine the computing power of systems in different parts of the globe, and so the list of benefits goes on.


See also
Entrepreneurs think blockchain is the future of cloud computing and HPC


It is also possible to use entangled photons to enhance the resolution of imaging techniques. Researchers at the University of Waterloo are currently hoping to develop a quantum radar that may be capable of detecting stealth aircraft.

Delivering on the promises of entanglement-based technologies, however, is proving to be difficult. That’s because entanglement is a very fragile phenomenon. Experiments on entanglement typically produce individual pairs of particles. However, single particles are difficult to detect accurately and they are often lost or obscured by background noise. So the task of producing them in entangled states, manipulating them in the ways required for useful operations, and finally using them, is often daunting.

This is where the new research from the University of Basel in Switzerland, published in three papers in Science herehere and here, has made a significant breakthrough. Instead of taking single particles and entangling them one at a time, the researchers begin with an ultra-cold gas, which is a collection of thousands of atoms. These are then cooled to within a hair’s breadth of absolute zero, the lowest temperature possible.

When confined in a small volume, atoms in the a cloud become indistinguishable from each other, forming a new state of matter known as a Bose-Einstein condensate, a phenomenon that also recently helped scientists turn light into a liquid. The atoms in the cloud now behave collectively, ergo, they are entangled.


See also
The world’s smallest computer makes a grain of rice look massive


Scientists first discovered this state of matter in 1995, earning them the Nobel Prize in Physics in 2001. Although it has been known for some time that this method entangles thousands of atoms simultaneously, no one had demonstrated a technique to actually make use of it – until now.

The researchers behind the new study showed that you can split these clouds into groups and still preserve the quantum connection between the atoms inside. They did this by releasing the atoms from their confined space and using a laser to split it and measure the properties of distant parts of the expanded cloud.

The researchers speculate that the methods developed could be expanded to allow every atom from the cloud to be used independently – if this were achieved, then there would be huge benefits for quantum computing. In digital computing, information is processed as ones and zeros, binary bits. The analogue to these in quantum computing are known as qubits. The current record for producing qubits one-by-one in entangled states for ions (charged atoms) is just 20, so producing thousands of qubits simultaneously in a cloud like this would represent a huge advancement.


See also
Microbes can now make a rare in demand Cancer drug


Another field that will benefit from this breakthrough is metrology, the science of ultra-precise measurements. When entanglement is established between two particles or systems, measurements made on one half reveal information about the other. This allows parameters to be measured with greater sensitivity than would otherwise be possible. Using entanglement in this way could improve the accuracy of atomic clocks and with it the Global Position System (GPS), which one day itself could be replaced with tomorrow’s ultra-sensitive quantum sensors, or make more sensitive detectors for MRI machines, for example.

Understanding and harnessing quantum effects, such as entanglement, will allow new technologies to be developed that have capabilities beyond anything we possess today. This is why there is so much excitement behind research in the field of quantum technology and why the advancements made in this new research are so important.

Related Posts

Leave a comment


Awesome! You're now subscribed.

Pin It on Pinterest

Share This