Scroll Top

Andrew Ng launches LandingLens to democratise AI development for everyone


Today AI models are hard to create, but what if there was a tool that could let anyone create one? That’s the purpose of Andrew Ng’s latest venture.


Love the Exponential Future? Join our XPotential Community, future proof yourself with courses from XPotential University, read about exponential tech and trendsconnect, watch a keynote, or browse my blog.

Andrew Ng’s cloud-based platform for computer vision, Landing AI, is taking on the challenge of democratising the development of Artificial Intelligence (AI) for small and medium sized businesses with its latest offering, LandingLens. The solution promises to accelerate the development and testing of computer vision AI projects without the need for intricate programming skills or prior AI experience.


See also
AI can sense students levels of stress from phone data and forms


“We started by exploring the manufacturing sector, one of the hardest industries in which to deploy computer vision. Then we found the tools we had built for manufacturing, with relatively few modifications, can also be useful for many other computer vision applications,” said Ng, noted AI academic, and founder and CEO of Landing AI.

The company announced today that its flagship computer vision product, LandingLens, is now available for a free trial, coupled with a new pricing scheme that enables pay-as-you-go usage beyond the initial trial period.


See how it works


“With the new platform, we aim to expand our tool’s use cases across several other industries,” Ng told reporters. “To me, it’s about achieving our goal of democratizing the creation of AI.”

According to Ng, the platform’s data-centric AI system focuses on data instead of code, and as various industries increasingly embrace AI solutions, a fundamental shift is necessary to unlock the complete potential of this technology.


See also
Meta's AI became an expert in Diplomacy and human gamers weren't the wiser


LandingLens prioritizes enhancing data quality for AI models, thereby enabling its functionality, even in cases where companies have limited data available for training the AI models, a common challenge encountered by most firms. The “data-centric” strategy involves training AI models to function proficiently with modest amounts of quality data rather than relying solely on the vast datasets that typically underpin AI applications in large-scale internet companies.

“Over the last few years, we did much work with customers that often had small datasets. During these experiences, we discovered multiple technology steps and optimizations that now enable our algorithm to work well on smaller datasets,” said Ng.

He explained that the model was trained on a ResNet dataset for image recognition, and in the backend, LandingLens’s pretrained algorithm utilizes AI-based automatic hyperparameter tuning, enabling it to work well with datasets of every size. When data is passed through the model, it’s optimized through numerous steps to deliver well-analyzed, high-quality output and detailed insights.

Recently, therapeutic antibody discovery firm OmniAb used LandingLens to successfully automate its visual inspection process, significantly increasing efficiency and throughput. In addition, the platform aided OmniAb in increasing AI access within its organization for use cases that involve people who are not high-level scientists.


See also
Researchers used a worm brained AI with just 19 neurons to control a self-driving car


To maintain data consistency within LandingLens, the platform uses an advanced labelling technology that automatically detects and corrects mislabelled images, enhancing overall data quality.

This collaborative labelling approach allows multiple users to label images and facilitates the process of reaching a consensus through data cloud and edge device deployment capabilities. As a result, deploying and testing your model can be achieved with just a few clicks of the mouse. Users can select the deployment option that best suits their requirements, ranging from a windows application to a programmatic API.

Additionally, LandingLens employs a continuous-learning mechanism that ensures that the created model remains up to date by integrating new data from the deployment environment to retrain the model.

“We want to make the model development workflow easy for users. The traditional approach to developing AI models has always been labelling, training to deployment. We want to ease this development workflow by having users not write much code, but focus more on data entry,” added Ng.


See also
Samsung uses IBM's brain chip to build a digital eye


Ng said the company would continue to focus on developing the LandingLens platform as a single tool that serves multiple computer vision applications.

“Use cases in computer vision are currently keeping us very busy. Many customers across industries are requesting us to add more features for cases such as streamlining heterogeneous data. So our current roadmap involves a lot more work to do in computer vision,” said Ng.

Through the LandingLens platform, Ng aims to solve issues found today with customization or longtail AI model development, which he sees as the most significant barrier to widespread AI adoption.

“The only way for organizations to unlock maximum value from their AI projects is when they have the liberty to customize their AI system as they need. They can do this by engineering the data rather than the code. This way, companies can adjust to the shifting market requirements and develop better models using lesser human resources,” explained Ng. “So, I’m excited about facilitating the goal of further democratizing access to AI creation.”

The company is pursuing applications in automotive, electronics and medical device manufacturing sectors. Ng said embracing a data-centric AI methodology and implementing AI and deep learning-based solutions for computer vision scenarios will benefit this diverse range of industries.

Related Posts

Leave a comment


Awesome! You're now subscribed.

Pin It on Pinterest

Share This