Scroll Top

MIT’s crazy laser can beam adverts directly into your ears


We now have the technology to beam sound directly into people’s ears, and future admen can’t wait to get hold of the tech.


Interested in the Exponential Future? Connect, download a free E-Book, watch a keynote, or browse my blog.

In the future, if we futurists are to believed, which we crazy loons definitely shouldn’t be, then the world of outdoor advertising will be dominated by gigantic holograms, like the descendants of this one, the world’s first real hologram that I wrote about last year, and their messages will be beamed directly into our brains. However, until the latter sci fi technology appears advertisers it seems might have to rely on beaming their messages into our heads, or at least ears, using everything from personalised sound that only we can hear, or now laser beams.


See also
Inside the Sony lab making the world's first AI music album


And this, along with some other tricks, is exactly what the new technology being developed by MIT does by using laser light to excite moisture in the air surrounding a target’s ear, causing it to quietly whisper a personal message from several metres away.

“Our system can be used from some distance away to beam information directly to someone’s ear,” says MIT team leader and physicist Charles M. Wynn. And you probably don’t need me to count off potential applications for such a device, which range from military applications, and non-lethal crowd control, something the Pentagon developed a similar laser to do last year, to targeted advertising, and pretty much anywhere else where ambient noise is a problem. And in case you’re worried about the whole ‘laser in your ear’ thing, the developers promise “it’s harmless.” Hmmmm.

“It is the first system that uses lasers that are fully safe for the eyes and skin to localise an audible signal to a particular person in any setting,” says Wynn.


See also
Stanford developed a gene editing tool that identifies and de-bugs faulty genes


Technology that channels sound into a narrow field has been around for decades, but most of it uses speakers to intensify soundwaves or channel ultrasound within a small area. Although useful for keeping sound relatively confined, they often require the listener to be a relatively short distance from the source.

Optical technology based on lasers has the potential advantage of reduced spreading over a wide distance, with higher frequencies allowing it to carry much further – which is why the team have turned from speakers to lasers.

The heart of MIT’s new technology is a 1.9 micrometre Thulium laser. Thanks to a principle called the photoacoustic effect, water vapour in the air absorbs the laser’s emission, causing it to vibrate at an audible frequency.


See also
The White House just issued a Defcon scale for cyber attacks


“This can work even in relatively dry conditions because there is almost always a little water in the air, especially around people,” says Wynn. “We found that we don’t need a lot of water if we use a laser wavelength that is very strongly absorbed by water. This was key because the stronger absorption leads to more sound.”

The team tested two methods for transmitting sound. The first simply varied the laser’s amplitude through a modulator in a continuous wave, creating vibrations that could be picked up by a microphone 2.5 metres (8 feet) away.

A second process ditched the modulator and used a mirror to sweep the laser back and forth over at the speed of sound in what’s known as dynamic photoacoustic spectroscopy, effectively creating louder waves by jiggling more water particles.


See also
Quantum radar that neutralises stealth technology demonstrated for first time, again


“There are trade-offs between the two techniques,” says opto-mechanical engineer Ryan Sullenberger. “The traditional photoacoustics method provides sound with higher fidelity, whereas the laser sweeping provides sound with louder audio.”

A potential disadvantage of the laser-wiggle method is it works at a very specific distance from the transmitter. Any closer, and the laser’s sweep will be too high-pitched. Any further, and the frequency drops below audibility.

Although it was only tested to a volume of 60 decibels, which is the level of a normal conversation, at a couple of metres, the researchers think they can scale up the distance and volume now they have proof of concept.

“We hope that this will eventually become a commercial technology,” says Sullenberger.


See also
Tesla's self-driving cars will drive coast to coast in 2018


Which means in future someone could potentially beam whispers to your ear from significant distances… something that’s both slightly unnerving and exciting at the same time.

The research was published in OSA Publishing.

Related Posts

Leave a comment


Awesome! You're now subscribed.

Pin It on Pinterest

Share This