Molecular farming means your next vaccine could be grown in a plant

WHY THIS MATTERS IN BRIEF

What if your food could vaccinate you against diseases? And other odd questions …

 

Love the Exponential Future? Join our XPotential Community, future proof yourself with courses from XPotential Universityconnect, watch a keynote, read our codexes, or browse my blog.

It’s a hot summers day and you bite down on a plump, chilled orange. Citrus juice explodes in your mouth in a refreshing, tingling burst. Ahh. And congratulations, just like that, you’ve been vaccinated against the latest virus.

 

See also
Neural implants let military pilots control three jets at once with their minds

 

That’s one of the goals of molecular farming, a kind of biomanufacturing technology, whose vision to have plants synthesise future medications and vaccines. Using genetic engineering and synthetic biology scientists can introduce brand new biochemical pathways into plant cells – or even whole plants – essentially turning them into single use bioreactors. And if it all sounds farfetched then the technologies to do this are already here, and they’ve been used – in one case to turn chickens into vaccine factories.

The whole idea has a retro-futuristic science fiction vibe. First conceived of in 1986, molecular farming got its boost three decades later, when the FDA approved the first – and only – plant derived therapeutic protein for humans to treat Gaucher disease, a genetic disorder that prevents people from breaking down fats.

 

See also
Photosynthesis breakthrough crams millions of years of plant evolution into months

 

But to Drs. Hugues Fausther-Bovendo and Gary Kobinger at Université Laval, Quebec and Galveston National Laboratory, Texas, respectively, we’re just getting started. In a new perspective article published last week in Science, the duo argue that plants have long been an overlooked resource for biomanufacturing.

Plants are cheap to grow and resist common forms of contamination that haunt other drug manufacturing processes, while being sustainable and environmentally friendly. The resulting therapeutic proteins or vaccines are often stored inside their seeds or other plant cell components, which can be easily dehydrated for storage – no ultra-cold freezers or sterile carriers required.

They also work fast. In just three weeks, the Canadian company Medicago produced a plant based candidate Covid-19 vaccine that mimics the outer layer of the virus to stimulate an immune response. The vaccine is now in late stage clinical trials.

 

See also
Futurist Virtual Keynote, London: The Future of Communities and Housing, British Property Federation

 

Even wilder, plants themselves can be turned into edible medicines. Rather than insulin shots, people with diabetes could just eat a tomato. Instead of getting a flu jab, you could munch on an ear of fresh, sweet corn. The draw of molecular farming encouraged DARPA, the Defense Advanced Research Projects Agency, to finance three massive facilities to optimise the manufacturing of plant made vaccines. And if we ever make it to Mars plants like these nanobionic plants will be far easier to cultivate than setting up a whole pharmaceutical operation.

“Molecular farming could have a considerable impact on both human and animal health,” the authors said.

 

See also
Hunting terrorists and preventing suicides, inside Zuckerberg's plan for AI

 

Hijacking other lifeforms to make drugs isn’t new. Take the common yeast, a scientist’s favorite medium for genetic engineering and a brewer’s best friend. Using little circular “spaceships” that carry new genes, called vectors, scientist can create brand-new biochemical pathways into these critters.

In one recent study, a Stanford team made 34 modifications to the yeast’s DNA to chemically assemble a molecule with widespread effects on human muscles, glands, and tissue.

Other mediums for synthesising drugs, antibodies, and vaccines have relied on a rainbow of hosts, from the exotic such as insect cells, to the slightly more mundane, such as eggs.

 

See also
World first as Chinese surgeon performs remote robotic surgery across a 5G network

 

The flu vaccine, for example, is cultured in chicken eggs, which supports the growth of an attenuated version of the virus to help stimulate the immune system. And an upcoming Covid-19 vaccine is doing the same. But if you’ve ever had the unfortunate experience of home brewing gone bad – beer, wine, kombucha, or otherwise – you’ll have a visceral feel of the dangers involved. Although using yeast or mammalian cells for biomanufacturing is the norm today, it’s a costly operation. Cells fill massive, rotating jugs inside strictly controlled facilities. Operations are under constant threat of zoonotic pathogens – dangerous, disease causing bugs that could waste a whole tank.

Using plants as replacement biofactories started with a simple calculation – they’re cheap and easy to grow. Plants only require three things: light, water, and soil. Add in fertiliser if you’re feeling fancy. Greenhouses, if needed, are still far more economical than stainless steel bioreactors.

 

See also
Scientists developed a device that enables two way communication with plants

 

But scientists soon realized other benefits. One is experience. With thousands of years of collective agricultural know-how under humanity’s belt, it’s relatively easy to gauge the best way to grow an antibody-producing tobacco leaf, antitoxin potato, or herpes vaccine-making soybean. In developing countries, just plant them in the field or on vertical stacks – no special equipment needed. To harvest simply crush the plants and extract the medications from the juice. Or simply freeze dry parts of the plant containing the drug into a powder for storage and shipping. The whole process is economical and sustainable.

Add in the recent boom in gene editing tools, and molecular farming is on a roll. The process is similar to genetically modified (GM) crops. It starts with introducing a vector into the whole plant or plant cells, which carries the genetic code to make a protein or a vaccine. Depending on the type of vector, the new DNA can integrate into the plant’s own genome – something called “stable expression” – or it can float around for just long enough for the plant to carry out its protein making instructions.

 

See also
American doctors turn to robots to help them treat Covid-19 patients

 

The latter, dubbed “transient expression,” is especially tantalising for its rocket speed. It’s possible to extract vaccines and therapeutic proteins within weeks, the authors said.

The other benefit though came as a surprise. Plant produced vaccines and monoclonal antibodies, for example, those used to treat severe Covid-19 cases, are far more potent than similar molecules made in chicken eggs or yeasts. Most vaccines these days require adjuvants, a molecular “sprinkle” on top that helps to further stimulate an immune response.

In plants, however, the resulting vaccine contains a soup of plant biochemicals. These molecules, the authors said, can act similarly to an adjuvant, potentially making vaccine formulations far more simple and affordable.

 

See also
Scientists have grown a human stomach in a petri dish

 

But with great power comes great responsibility. Overstimulating the immune system can have catastrophic side effects. There’s good news. So far, monoclonal antibodies produced by plants against HIV and Ebola showed very few side effects, with the most common ones being a low fever in three clinical trials.

But perhaps the most tantalising promise of molecular farming in the near future is crops that contain a vaccine or other drug.

If the idea of eating a vaccine grosses you out then there’s precedent. One type of the polio vaccine, which contains a weakened virus given as an edible, was once used widely in wiping out the virus. However, in a six-year span at the turn of the century, a slew of plant-based edible vaccines against Hep B, rabies, and the norovirus became pioneers, and martyrs, of that goal.

 

See also
MIT's lab grown wood and plants take aim at traditional farming and forestry

 

“The proportion of immunised individuals who generated an immune response … was disappointingly lower than in clinical trials involving standard vaccines administered,” the authors said.

That’s changing however. With the rise of CRISPR and other precision gene-editing tools, “edible plant-made vaccines could now generate meaningful immune responses.”

Several recent tests tried using a vaccine shot as the first dose, with an edible plant-based vaccine derived from rice, cereals, or corn as a booster.

For now though edible plant-based therapeutics are still in the preclinical development phase. Even when technologically possible, they’ll also likely hit roadblocks and protests. Current animosity towards GMOs may carry over. Costs and protocols for safe manufacturing will have to be in place. But, all that said, molecular farming could also be the great equaliser for therapeutic access, while minimising impact on an increasingly tumultuous climate.

 

See also
The WHO endorses the use of the world's first Malaria vaccine

 

To the authors, the key is to look ahead.

“Manufacturing of pharma­ceutical proteins may remain dominated by current production systems until economic attractiveness … shifts the balance toward molecular farming,” they said.

Related Posts

Leave a comment

Get the latest futuristic news delivered directly to your inbox!

Awesome! You're now subscribed.

Pin It on Pinterest

Share This