DeepMind’s AI learns the rules as it goes so it can conquer the real world

WHY THIS MATTERS IN BRIEF

The real world doesn’t always have rules, so if we want to create AGI then we need AI’s that can learn things as they go along.

 

Love the Exponential Future? Join our XPotential Community, future proof yourself with courses from XPotential Universityconnect, watch a keynote, or browse my blog.

Albert Einstein once said, “You have to learn the rules of the game, and then you have to play better than anyone else.” That could well be the motto at DeepMind, Google’s world class Artificial Intelligence (AI) company that last year burned through over $1.3 Billion in research cash, as a new report from the company reveals they’ve developed a program that can master complex games without even knowing the rules – something that’s a major step forward in how AI learns new knowledge and acquires new skills and capabilities.

 

READ
Tech giants team up to create the world's first Deep Learning standard

 

DeepMind has previously made ground breaking strides using reinforcement learning that help it’s AI’s make all the right decisions, aswell as help them master the Chinese board game Go and the Japanese strategy game Shogi, as well as chess and challenging Atari video games. In all those instances their AI’s were given the rules of the game.

But Nature recently reported that DeepMind’s MuZero has accomplished the same feats, and in some instances beaten the earlier programs, without first learning the rules.

Programmers at DeepMind relied on a principle called “Look-Ahead Search.” With that approach, MuZero assesses a number of potential moves based on how an opponent would respond. While there would likely be a staggering number of potential moves in complex games such as chess, MuZero prioritizes the most relevant and most likely manoeuvres, learning from successful gambits and avoiding ones that failed.

 

READ
Nowhere to hide for Goldman's elite as AI culls jobs

 

When performing against Atari’s Ms. Pac-Man, MuZero was restricted to considering only six or seven potential future moves, yet still performed admirably, according to researchers.

“For the first time, we actually have a system that is able to build its own understanding of how the world works and use that understanding to do this kind of sophisticated look-ahead planning that you’ve previously seen for games like chess,” said DeepMind’s principal research scientist David Silver. MuZero can “start from nothing, and just through trial and error, both discover the rules of the world and use those rules to achieve kind of superhuman performance.”

 

The evolution of DeepMind’s AI. Courtesy: BBC

 

Silver envisions greater applications for MuZero than mere games. Progress has already been made on video compression, a challenging task considering the huge number of varying video formats and numerous modes of compression. So far, they have achieved a 5 percent improvement in compression, no small feat for the company owned by Google, which also handles the gigantic cache of videos on the world’s second-most popular web site, YouTube, where a billion hours of content are viewed daily.

 

READ
America launches the worlds first fully autonomous submarine hunter

 

Silver says the laboratory is also looking into robotics programming and protein architecture design, which holds promise for personalised production of drugs.

It is a “significant step forward,” according to Wendy Hall, professor of computer science at the University of Southampton and a member of England’s AI council. “The results of DeepMind’s work are quite astounding and I marvel at what they are going to be able to achieve in the future given the resources they have available to them,” she said.

But she also raised a concern about the potential of abuse.

“My worry is that whilst constantly striving to improve the performance of their algorithms and apply the results for the benefit of society, the teams at DeepMind are not putting as much effort into thinking through potential unintended consequences of their work,” she said.

 

READ
Formula E's new E-Sports "ghosting" app lets gamers race real drivers in real time

 

In fact, the US Air Force had tapped early research papers covering MuZero that were made public last year and used the information to design an AI system that could launch missiles from a U-2 spy plane against specified targets. When asked by Wired what he thought of such military applications, Silver left no doubt about his concerns.

“I oppose the use of AI in any deadly weapon, and I wish we had made more progress toward a ban on lethal autonomous weapons,” he said. He added that DeepMind and its co-founders have all signed the Lethal Autonomous Weapons Pledge, which asserts the belief that deadly technology should always remain under human control, and not AI-based algorithms.

Silver says the challenges ahead are to understand and implement algorithms as effective and powerful as the human brain, and to help advance the development of another form of revolutionary AI – Artificial General Intelligence (AGI).

 

READ
US CDC launches a Cornoavirus self-checker bot to ease pressure on front line staff

 

“We should be aiming to achieve that. The first step in taking that journey is to try to understand what it even means to achieve intelligence,” he said.

“We think this really matters for enriching what AI can actually do because the world is a messy place. It’s unknown – no one gives us this amazing rulebook that says, ‘Oh, this is exactly how the world works.’” Silver said. “If we want our AI to go out there into the world and be able to plan and look ahead in problems where no one gives us the rulebook, we really, really need this.”

Related Posts

Leave a comment

Get your FREE! XPU Introduction to Exponential Thinking Course now. No registration, no catches, just awesome knowledge.GET FUTURED
+

Get the latest futuristic news delivered directly to your inbox!

Awesome! You're now subscribed.

Pin It on Pinterest

Share This