Scroll Top

Researchers made the world’s smallest antenna out of DNA

WHY THIS MATTERS IN BRIEF

One day everything will be connected – even your cells and this is the tech that could do it …!

 

Love the Exponential Future? Join our XPotential Community, future proof yourself with courses from XPotential Universityconnect, watch a keynote, read our codexes, or browse my blog.

If you want to connect your superyacht to a network you have a giant antenna. If you want to connect your smartphone to a 5G network then you have a small antenna. And, if you want to hook your body’s cells to a network so can record and transmit information about them using something like a super sci-fi cellular recording system then you need an even smaller antenna – a nanosized one like this one …

 

See also
Researchers have found a way to create universal donor organs

 

As antenna systems that let us connect smaller and smaller things to our networks get smaller and more powerful scientists in Canada have announced that they’ve built the tiniest antenna ever made – just five nanometers in length. Unlike its much larger counterparts we’re all familiar with, this minuscule thing isn’t made to transmit radio waves, but to glean the secrets of ever-changing proteins.

The nanoantenna is made from DNA, the molecules carrying genetic instructions that are around 20,000 times smaller than a human hair. It’s also fluorescent, which means it uses light signals to record and report back information. And those light signals can be used to study the movement and change of proteins in the human body in real time – which will come in handy as we close I on our quest to turn humans into sci-fi like biological computers

 

See also
New virtual reality project lets doctors fly through cancers to save lives

 

Part of the innovation with this particular antenna is the way in which the receiver part of it is also used to sense the molecular surface of the protein it’s studying. That results in a distinct signal when the protein is fulfilling its biological function.

“Like a two-way radio that can both receive and transmit radio waves, the fluorescent nanoantenna receives light in one color, or wavelength, and depending on the protein movement it senses, then transmits light back in another color, which we can detect,” says chemist Alexis Vallée-Bélisle, from the Université de Montréal (UdeM) in Canada.

Specifically, the job of the antenna is to measure the structural changes in proteins over time. Proteins are large, complex molecules that carry out all kinds of essential tasks in the body, from supporting the immune system to regulating the function of organs.

 

See also
Blockchain startups are lining up to decentralise and revolutionise the internet

 

However, as proteins rush about doing their jobs, they undergo constant changes in structure, transitioning from state to state in a highly complex process scientists call protein dynamics. And we don’t really have good tools to track these protein dynamics in action.

“Experimental study of protein transient states remains a major challenge because high-structural-resolution techniques, including Nuclear Magnetic Resonance (NMR) and X-Ray Crystallography, often cannot be directly applied to study short-lived protein states,” the team explains in their paper.

The latest DNA synthesizing technology – some 40 years in development – is able to produce bespoke nanostructures of different lengths and flexibilities, optimized to fulfil their required functions.

 

See also
New brain research discovers people are great at predicting what'll go viral

 

One advantage that this super-small DNA antenna has over other analysis techniques is that it’s able to capture very short-lived protein states. That, the researchers say, means there are plenty of potential applications here, in both biochemistry and nanotechnology more generally.

“For example, we were able to detect, in real time and for the first time, the function of the enzyme alkaline phosphatase with a variety of biological molecules and drugs,” says chemist Scott Harroun, from UdeM. “This enzyme has been implicated in many diseases, including various cancers and intestinal inflammation.”

While exploring “the universality” of their design, the team successfully tested their antenna with three different model proteins – Streptavidin, Alkaline Phosphatase and Protein G – but there’s potentially much more to come, and one of the advantages of the new antenna is its versatility.

 

See also
Google and UK NHS team up to use AI to improve cancer treatment

 

“Nanoantennas can be used to monitor distinct bio-molecular communications and mechanisms in real time, including small and large conformational changes – in principle, any event that can affect the dye’s fluorescence emission,” the team writes in their paper.

DNA is becoming more and more popular as a building block that we can synthesise and manipulate to create nanostructures like the antenna in this study. DNA chemistry is relatively simple to program, and easy to use once programmed.

The researchers are now looking to create a commercial startup so that the nanoantenna technology can be practically packaged and used by others, whether that’s pharmaceutical organizations or other research teams.

 

See also
Scientists developed a device that enables two way communication with plants

 

“Perhaps what we are most excited by is the realization that many labs around the world, equipped with a conventional spectrofluorometer, could readily employ these nanoantennas to study their favourite protein, such as to identify new drugs or to develop new nanotechnologies,” says Vallée-Bélisle.

The research has been published in Nature Methods.

Related Posts

Leave a comment

FREE! 2024 TRENDS AND EMERGING TECHNOLOGY CODEXES
+

Awesome! You're now subscribed.

Pin It on Pinterest

Share This